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Berry phase in Tavis-Cummings model
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Abstract. In this paper we investigate the Berry phase in Tavis-Cummings model in the rotating wave
approximation. The dipole-dipole interaction between the atoms is considered. The eigenfunctions of the
system are obtained and thus the Berry phase is evaluated explicitly in terms of the introduction of the
phase shift. It is shown that the Berry phase can be easily controlled by the atom-cavity coupling strength,
the cavity frequency detuning, which can be important in applications in geometric quantum computing.

PACS. 03.65.Vf Phases: geometric; dynamic or topological – 03.65.Yz Decoherence; open systems; quan-
tum statistical methods

1 Introduction

The Berry phase [1], which is an important topic in mod-
ern physics, describes a novel phase factor of the wave
functions depending only on the geometry of the path
when a time-dependent quantum system undergoes an
adiabatic and cyclic evolution. Recently, the Berry phase
has been regarded as an essential way to implement oper-
ation of a universal quantum logic gate in quantum com-
puting. Cavity QED is an important solid-state system for
processing quantum information and implementing quan-
tum computing [2]. It is shown that the Berry phase can
be easily controlled by the coupling strength and the fre-
quency detuning of the cavity field [3–9,16], which can be
important in applications in geometric quantum comput-
ing [3,4].

It should be noticed that above investigations are lim-
ited to the framework of the classical controlled external
field, namely, this external field itself has not been quan-
tized. It is known in quantum optics that a quantized field
can lead to many novel quantum effects such as quan-
tum jumps, collapses and revivals of the Rabi oscillations.
Moreover, if the quantum system interacts with the vac-
uum, spontaneous emission and Lamb shift can also be ob-
served in experiment. Latterly, a novel Berry phase, which
has no zero value in the vacuum state, can also be induced
if the quantized field is controlled adiabatically and pe-
riodically [11,17]. However, this investigation so far has
been restricted to single qubit Jaynes-Cummings model.
In this paper, we extend this method to Tavis-Cummings
model [12] that there are two two-level atoms coupling
with a single mode quantized field cavity, and the dipole-
dipole interaction between atoms is turned on. Yuan and
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Zhu [13] investigated two coupled quantum dots which are
embedded in a high-Q single mode cavity and coupled to
the common phonon fields, and discussed the influence of
the environmental temperatures on the Berry phase. In
this paper we study the novel behavior of the Berry phase
of the ground state. The eigen-functions of the system are
obtained and thus the Berry phase is evaluated explicitly
in terms of the introduction of the phase shift.

The dipole-dipole interaction of the atoms can not be
neglected when the distance of the atoms is less than the
wave length in the cavity. The Hamiltonian can be given
in the rotating wave approximation [14]

H = ωa†a+
ω0

2
(σz

1 +σz
2)+λ

[
a

(
σ+

1 +σ+
2

)
+ a†

(
σ−

1 + σ−
2

)]

+J
(
σ+

1 σ
−
2 + σ−

1 σ
+
2

)
, (1)

where Pauli operator σz
i = |e〉i 〈e| − |g〉i 〈g|, σ+

i = |e〉i 〈g|
and σ−

i = |g〉i 〈e|, with |e〉i and |g〉i being the excited and
ground states of the ith atom, i = 1, 2, a†and a are the cre-
ation and annihilation operators for the cavity mode, ω0 is
the atomic transition frequency, ω is the cavity frequency,
λ is the atom-cavity coupling strength and J is dipole-
dipole coupling strength between atoms. In the compu-
tation vectors of the Hilbert space such that |n, e1, e2〉,
|n+ 1, e1, g2〉, |n+ 1, g1, e2〉 and |n+ 2, g1, g2〉, the matrix
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Fig. 1. The ground-state energy versus the coupling strength
λ and the cavity detuning ∆. ∆ and λ are measured in units
of J .

where ∆ = ω0 − ω is frequency detuning of the cavity
field. The instantaneous eigenvalues Ej(j = 1, 2, 3, 4) and
the corresponding eigenstates |ψj〉 of Hamiltonian (2) can
be found analytically; however, it is pointless to display
the tedious formula in the present paper. For simplicity
we write out

|ψj〉 = aj |n, e1, e2〉 + bj |n+ 1, e1, g2〉
+ cj |n+ 1, g1, e2〉 + dj |n+ 2, g1, g2〉. (3)

The ground-state energy as a function of the coupling
strength λ and the detuning∆ is shown in Figure 1 (∆ and
λ are measured in units of J), from which we can see that
both the coupling strength λ and the detuning ∆ can con-
trol the ground-state energy as well as the Berry phase as
will be shown. The level crossings lead to the presence
of non-analyticity in the energy spectrum and the cor-
responding quantum phase transition (QPT) [15] can be
represented by the discontinuous variation of the ground
state Berry phase.

It is known that in the standard semiclassical frame-
work the field operators aand a† are replaced by the clas-
sical amplitude with rotation factors e−iϕ(t) and eiϕ(t)

with ϕ (t) = ω0t. Therefore, the semiclassical Hamiltonian
corresponding to Hamiltonian (1) can be written as
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where α is the amplitude of the oscillating field. It can
be seen easily that this semiclassical Hamiltonian can
be expressed in terms of an effective vector field B =
(2λα cosϕ, 2λα sinϕ,∆) as

H = B (σ1 + σ2) + J
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)
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When ϕ (t) = ω0t is changed adiabatically and period-
ically in the parameter space of the effective vector field
B, the semiclassical Berry phase can also be obtained [16].
However, if the controlled external field is quantized, this

effective vector field becomes part of the system itself and
therefore cannot be taken into account any longer as an
external variable. But the corresponding state can also
be manipulated in the parameter space of the coupling
strength λ and detuning ∆ for Hamiltonian (1). Following
the spirit of [11], this Berry phase can be evaluated by
introducing the following phase shift:

R (t) = e−iϕ(t)a†a (6)

where ϕ (t) = ω0t should be changed adiabatically and
periodically.

This phase shift R (t) can lead to the time-
dependent transformation |Ψj (t)〉 = R (t) |ψj〉 or |ψj〉 =
R† (t) |Ψj (t)〉, where |ψj〉 is the eigenvector of the time-
independent eigen equation H |ψj〉 = Ej |ψj〉 and |Ψj (t)〉
is the eigenvector of the time-dependent eigen equation
id |Ψj (t)〉 /dt = H ′(t) |Ψj (t)〉 with H ′(t) = R(t)HR†(t) −
iR(t)dR†(t)/dt. For the time-dependent eigen equation
id |Ψj (t)〉 /dt = H ′(t) |Ψj (t)〉 the Berry phase can be cal-
culated in terms of standard definition using
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By using the transformations |Ψj (t)〉 = R (t) |ψj〉 and
〈Ψj (t)| = 〈ψj |R†(t), the final Berry phase corresponding
to Hamiltonian (1) can be given as

γj = i

∫ 2π

0

〈ψj |R†(ϕ)
d

dϕ
R(ϕ) |ψj〉 dϕ. (8)

For the Jaynes-Cummings model whose Hamiltonian
reads ωa†a + ω0

2 σ
z + λ

(
aσ+ + a†σ−)

, the Berry phase
can be evaluated as γ+ = π (1 − cos θn) + 2πn and γ− =
−π (1 − cos θn) + 2π (n+ 1) with cos θn = ∆√

∆2+4λ2(n+1)
,

which can be mapped into the semiclassical results in the
coherent state representation with large amplitude [11].
However, for Hamiltonian (1) the Berry phase can be de-
rived from equations (3) as the following:

γj = 2π
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)
+ (n+ 2) |dj |2

]
.

(9)
This is very interesting for discussions on the ground-state
Berry phase (n = 0). A novel observation of this paper is
that the ground-state Berry phase can be controlled by
both the coupling strength λ and the detuning ∆ shown
in Figure 2. The behavior of the ground-state Berry phase
is similar to that of the ground-state concurrence as a
measure of the entanglement between the two qubits [14].
There are a series of critical points of detuning for differ-
ent coupling strength that the ground-state Berry phase
take place mutation, no less than ground-state concur-
rence. However, the ground-state concurrence C jump up
with the increase of absolute value of detuning, whether
detuning is positive or negative, whereas the ground-state
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Fig. 2. The ground-state Berry phase versus the coupling
strength λ and the cavity detuning ∆. ∆ and λ are measured
in units of J .

Berry phase jump down when detuning is negative. This
result extends the conclusion of the reference [18], in which
the concurrence is related to the cyclic geometric phase of
the individual spins.

In conclusion, the Berry phase in Tavis-Cummings
model with the dipole-dipole interaction has been ob-
tained. A novel feature of the Berry phase can be
controlled by the coupling strength λ and the frequency
detuning ∆ of the quantized cavity field, which has im-
portant application in geometric quantum computing.
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